
GRANDES CULTURES BUSES AGRICOLES ET ACCESSOIRES

> BUSES POUR GRANDES CULTURES À LONG TERME, MOINS EST TOUJOURS MIEUX

Lechler est un leader mondial dans les technologies des buses. Depuis plus de 140 ans, nous sommes pionniers dans de nombreux développements révolutionnaires dans le domaine de la technologie des buses. Grâce à nos décennies d'expérience dans la technologie de réduction de la dérive, nous avons pu apporter une contribution significative à une application plus douce et plus précise des produits phytopharmaceutiques.

Dès les années 1990, nous avons développé l'ID 120-05 – la première buse approuvée par le JKI avec une réduction de dérive de 90 % – et avons ainsi posé un jalon pour l'orientation future. Quelques années plus tard, la buse PRE (VA pour Syngenta) permettait déjà d'obtenir une réduction de dérive de 95 % pour les pulvérisations en plein champ. D'autres solutions innovantes ont suivi à intervalles rapprochés, comme l'injecteur breveté de la buse IDTA qui peut être retiré sans outils.

Nous avons constamment suivi cette voie avec de nouveaux développements réguliers. Par exemple, la buse à double jet plat XDT 130 avec une dérive extrêmement faible sur toute la plage de pression ou la buse de bordure d'engrais liquide, qui permet une répartition transversale parfaitement uniforme jusqu'au bord du champ.

En Europe, Lechler est depuis longtemps le numéro un en technologie de buses. Cependant, nous ne nous considérons pas seulement comme un fabricant de buses, mais avant tout comme un partenaire dans les efforts visant à parvenir à une agriculture à la fois respectueuse de l'environnement et efficace. Cela vaut également et particulièrement pour les grands marchés en croissance que sont la Chine et l'Inde, où nous sommes déjà représentés par des filiales et un réseau de vente dense.

DESIGN DE BUSE INNOVANT DÉMONTRÉ AVEC L'EXEMPLE DES BUSES À DOUBLE JET PLAT

Connaître les nombreuses exigences liées à la production végétale est une chose. Les mettre en œuvre efficacement en est une autre. Par exemple, lors de l'application de produits phytopharmaceutiques, il est toujours nécessaire de prendre en compte les exigences réglementaires en plus des aspects liés à la production végétale.

L'un des principaux objectifs est de réduire la dérive vers les cultures voisines et d'autres zones non ciblées. De plus, une distribution optimale des gouttelettes, un dépôt et une couverture de la zone cible doivent être garantis. Chez Lechler, nous nous efforçons d'optimiser en permanence toutes ces caractéristiques.

Les buses à double jet plat Lechler en sont un bon exemple, car elles ont été continuellement perfectionnées au fil des années. Tous les modèles pulvérisent simultanément vers l'avant et l'arrière. Différents angles de pulvérisation et spectres de gouttelettes garantissent une couverture optimale pour chaque application.

Comparaison de 3 buses à double jet plat

	IDKT	IDTA	XDT
Туре	Buse à injection d'air, symétrique	Buse à injection d'air, asymétrique	Buse non venturi, symétrique
Taille de gouttelette	Moyenne à très grossière	Grossière à très grossière	Très grossière à extrêmement grossière
Application recommandée	Herbicides, fongicides, insecticides et régulateurs de croissance	Herbicides, fongicides, insecticides et régulateurs de croissance	Herbicide de prélevée et post-levée précoce, fongicide pour pommes de terre
Usage	Peut être utilisé pour une vitesse de pulvérisation allant jusqu'à 12 km/h	Peut être utilisé pour une vitesse de pulvérisation supérieure à 12 km/h	Réduction maximale de la dérive, même à des vitesses de pulvérisation élevées

IDKT - la solution complète

L'IDKT est une buse à double jet plat symétrique à injection d'air de conception compacte et qui génère un spectre de gouttelettes ultra grossières à moyennes. Elle convient aux applications de produits phytopharmaceutiques dans les cultures céréalières, le colza, la betterave sucrière, le maïs, les pommes de terre, le soja et le tournesol. Elle est particulièrement bien adaptée à l'application d'herbicides, d'insecticides et de fongicides en mettant l'accent sur la couverture des surfaces verticales à des vitesses de pulvérisation allant jusqu'à 12 km/h.

L'IDKT pulvérise selon un angle symétrique de 30°/30° vers l'avant et l'arrière. Elle permet d'obtenir un très bon mouillage des petites feuilles ainsi que des surfaces verticales dans la plage de pression de 1,5 à 3 bars.

Avantages

- Dépôt optimal sur le feuillage et les surfaces cibles verticales grâce au double jet plat symétrique 30°/30°
- Ombres de pulvérisation réduites
- Faible dérive et réduction des pertes dans la plage de pression jusqu'à 3 bars (selon le calibre)
- Convient pour PWM

Couverture optimale grâce au double jet plat

IDTA - la solution rapidité

La buse de pulvérisation à double jet plat IDTA génère un spectre de gouttelettes ultra grossières à grossières. Avec sa conception asymétrique et sa large plage de pression à faible dérive, elle permet des cadences de travail élevées et est particulièrement adaptée aux applications de produits phytopharmaceutiques dans les cultures céréalières, le colza, la betterave sucrière, le maïs, les pommes de terre, le soja et le tournesol. Elle s'utilise avec les herbicides, insecticides et fongicides, l'accent étant mis sur la couverture des surfaces verticales à des vitesses de pulvérisation supérieures à 12 km/h.

L'IDTA pulvérise selon des angles asymétriques de 120° vers l'avant et 90° vers l'arrière pour assurer une distribution et dépôt tous deux optimaux des produits phytopharmaceutiques. Le résultat est une largeur de pulvérisation uniforme sur la surface cible. Les rapports de débit – 60 % vers l'avant et 40 % vers l'arrière – ont été adaptés aux exigences de cadences de travail et de vitesses de pulvérisation plus élevées. Des gouttelettes légèrement plus fines assurent une couverture optimale dans le sens de la marche avant, tandis qu'un spectre de gouttelettes plus grossières garantit la stabilité de dérive requise vers l'arrière.

Avantages

- Ombres de pulvérisation réduites même à des vitesses de pulvérisation supérieures à 12 km/h
- Avec un format de buse à injection d'air longue, il n'y a qu'un léger changement dans le spectre des gouttelettes lorsque la pression augmente dans la plage de pression de 3 à 8 bars
- L'angle de pulvérisation réduit vers l'arrière compense la « trajectoire de vol » plus longue des gouttelettes – pas de pulvérisation au-delà de la limite du champ et stable avec le vent
- Stabilité de la dérive sur une large plage de pression

NOUVEAU

XDT - la solution faible dérive

La buse XDT combine la technologie de pulvérisation à double jet plat avec un spectre de gouttelettes ultra grossières à extrêmement grossières et une très faible proportion de gouttelettes fines. Cette buse est donc particulièrement adaptée aux applications de pré-levée et de post-levée précoce sur les céréales, le colza, les pommes de terre, le maïs, les pois, les haricots et le tournesol. Les valeurs de dérive extrêmement faibles font de la XDT une solution intéressante pour la protection des zones non cibles. Le traitement tardif en post-levée avec des herbicides anti-graminées (avec effet sur le feuillage) au printemps constitue une application limite pour la buse XDT en raison du spectre de grosses gouttelettes.

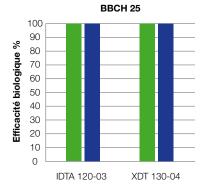
Les buses XDT se caractérisent par leur conception compacte « buse dans l'écrou » où l'orifice de dosage est installé dans le corps de la buse. Les buses non venturi avec pré-atomiseur intégré conviennent également aux équipements PWM.

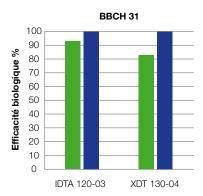
Avantages

- Large plage de pressions pour les applications à faible dérive
- 40°/40° vers l'avant/l'arrière, convient parfaitement aux vitesses de pulvérisation plus élevées
- Cadence de travail élevée et flexibilité d'adaptation à la vitesse du pulvérisateur
- Jet plat à 130° parfaitement adapté aux rampes de faible hauteur, par ex. pour pulvérisateurs avec commande de rampe
- Couverture optimale avec ombre de pulvérisation réduite
- Pour une application ponctuelle même dans des conditions météorologiques défavorables

Bon à savoir

Le risque de dérive dépend principalement de la part de fines gouttelettes de taille inférieure à 100 µm. Ces gouttelettes très légères n'ont pas de trajectoire de vol ciblée, mais tombent ou flottent très lentement vers la zone cible et peuvent donc très facilement dériver vers des zones non cibles. En d'autres termes, plus la part de fines gouttelettes V100 d'un spectre de gouttelettes est faible, plus la dérive de la buse est faible. En comparaison : le V100 de la buse XDT est jusqu'à dix fois inférieur à celui des buses à injecteur d'air classiques.


Études d'efficacité


L'efficacité herbicide en post-levée précoce en fonction de la technologie d'application avec un débit de 300 l/ha a été étudiée. Deux buses de pulvérisation à double jet plat (IDTA 120-03 C, XDT 130-04) ont été utilisées pour l'application d'herbicides BBCH 25 et BBCH 31 sur blé d'hiver. Lors de la première application, à la mi-avril, aucune différence d'efficacité biologique n'a été constatée entre les deux buses.

Les résultats étaient identiques pour la première et la deuxième évaluation. En cas d'application tardive BBCH 31, on peut s'attendre à un effet initial retardé, mais cela montre néanmoins la pleine efficacité.

Buses XDT pulvérisant un herbicide de pré-levée

■ 21.05.2021 ■ 21.06.2021

Efficacité biologique (%) de produit à base de pinoxaden contre Apera spica-venti (Agrostide jouet du vent). Deux types de buses (IDTA 120-03 C, XDT 130-04) ont été utilisés pour l'application d'herbicide BBCH 25 et BBCH 31 sur blé d'hiver. Les colonnes vertes montrent l'efficacité biologique au premier relevé (21 mai 2021). Les colonnes bleues montrent l'efficacité biologique au deuxième relevé (21 juin 2021). Source : Syngenta, EAME-CPD, E. Siegert, Field Scientist, Döbeln, Saxe.

Couverture dans la zone supérieure de la plante

Couverture dans la zone centrale de la plante

Couverture dans la zone inférieure de la plante

Couverture optimale

Lors de l'application de fongicides, la buse XDT obtient également de très bons résultats grâce à sa technologie de pulvérisation à double plat et malgré le spectre de gouttelettes ultra grossières.

Elle permet d'obtenir une couverture optimale de l'ensemble des plants de pommes de terre. Les poils sur les feuilles de pomme de terre empêchent les gouttelettes de tomber.

BUSES POUR PRODUCTION GRANDES CULTURES

LES EXIGENCES TECHNIQUES

Une application optimale des produits phytopharmaceutiques n'est garantie que si des tolérances de débit étroites et une répartition uniforme sont garanties. Ces paramètres sont définis dans les directives JKI et ENTAM et dans les normes EN/ISO correspondantes au niveau européen et international.

Dans le cas des buses Lechler approuvées par JKI, le débit volumique des nouvelles buses respecte une tolérance d'un maximum de \pm /-5 %.

En combinaison, les nouvelles buses Lechler approuvées par JKl doivent garantir la distribution transversale la plus uniforme possible. Le coefficient de variation sur toute la largeur de la rampe de pulvérisation ne doit pas dépasser 7 % dans la plage de pression spécifiée et pour les hauteurs de pulvérisation correspondantes.

LES EXIGENCES BIOLOGIQUES

Afin d'obtenir un effet optimal, l'application des produits phytopharmaceutiques doit être extrêmement précise. Les buses de précision Lechler permettent d'obtenir un dosage précis et une distribution uniforme. De plus, les recommandations de doses des fabricants de produits phytopharmaceutiques doivent toujours être respectées. La détermination de la zone d'application avant utilisation est d'une importance décisive pour un dépôt optimal du produit phytopharmaceutique.

La distribution s'effectue via des buses à jet plat et des buses à double jet plat. Les buses à jet plat permettent généralement une bonne pénétration dans les cultures (lutte contre le mildiou dans les cultures céréalières). En revanche, des buses à double jet plat sont recommandées pour un dépôt optimal sur les surfaces cibles verticales (contrôle des graminées, traitement des épis) et pour réduire l'ombre de pulvérisation (semis direct, sol motteux).

EXIGENCES ENVIRONNEMENTALES

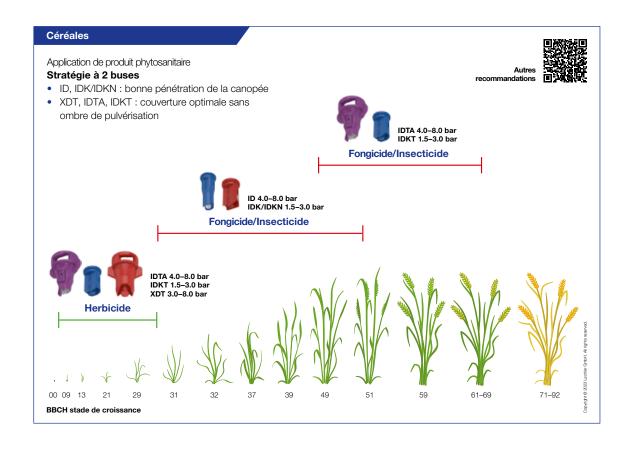
Le vent et les courants thermiques peuvent déplacer certaines gouttelettes contenant les substances actives en dehors de la zone cible.

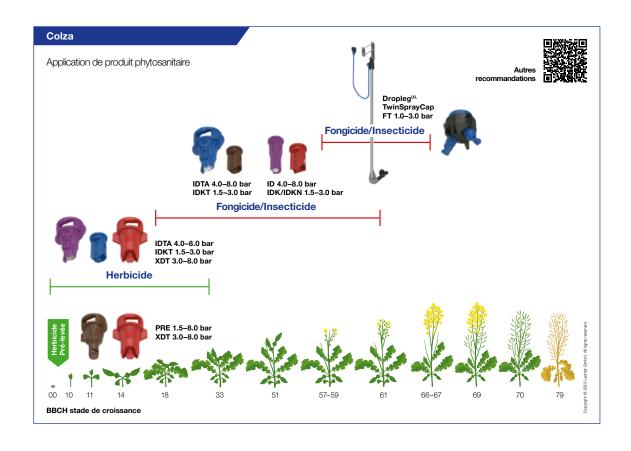
Cette dérive peut polluer ou endommager les cultures adjacentes, contaminer les eaux voisines et présenter un risque tant pour les humains que pour les animaux. De plus, la dérive conduit fréquemment à des dosages incorrects pour la culture traitée.

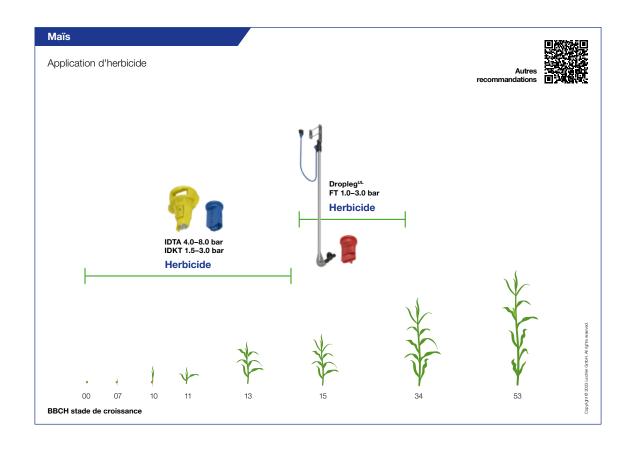
Les causes de dérive dépendent de facteurs spécifiques aux équipements et météorologiques tels que :

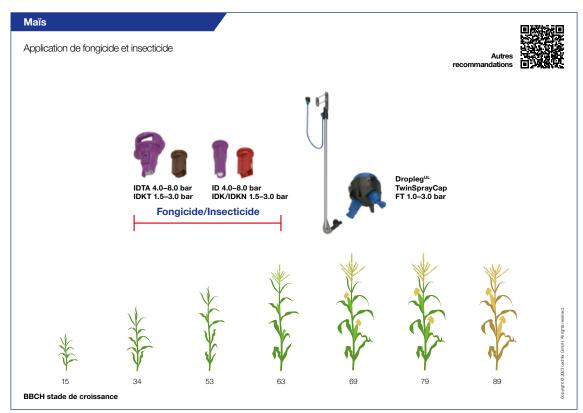
- Taille des gouttelettes
- Vitesse du pulvérisateur
- Hauteur de pulvérisation
- Vitesse du vent
- Température de l'air
- Humidité de l'air

ÉQUIPEMENT RÉDUCTION DE DÉRIVE

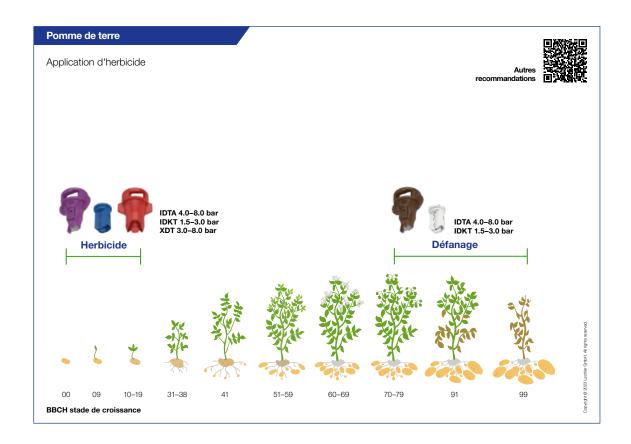

Des règles d'application des produits phytopharmaceutiques (ex. restrictions de distance par rapport aux zones aquatiques et limites des champs) ont été définies afin de protéger les organismes non cibles. En fonction de la toxicité du produit, les distances par rapport à l'eau et aux limites des champs peuvent être réduites grâce à des équipements réduisant la dérive tels que les buses à injection d'air.

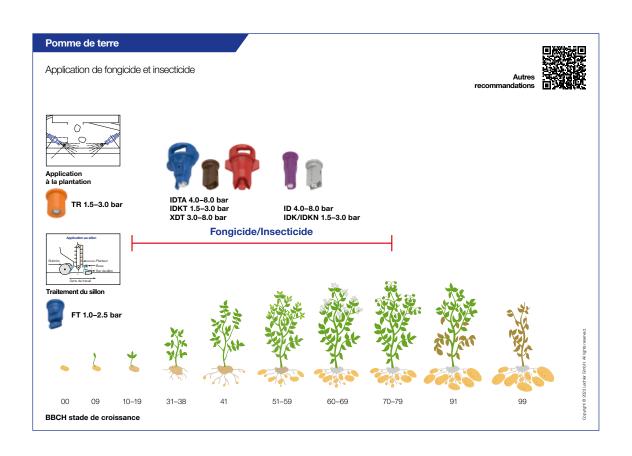

Les buses Lechler sont officiellement autorisées dans de nombreux pays européens comme dispositifs de réduction de dérive dans les classes de réduction 99/95/90/75/66/50 et 25 %. Les critères sur lesquels reposent les réglementations comprennent, entre autres, la technologie des buses, le type d'eau, la végétation des berges, la largeur de la limite du champ, la concentration du mélange, la technologie du processus (par exemple la pression) ainsi que les influences externes telles que la température, la direction et la vitesse du vent.

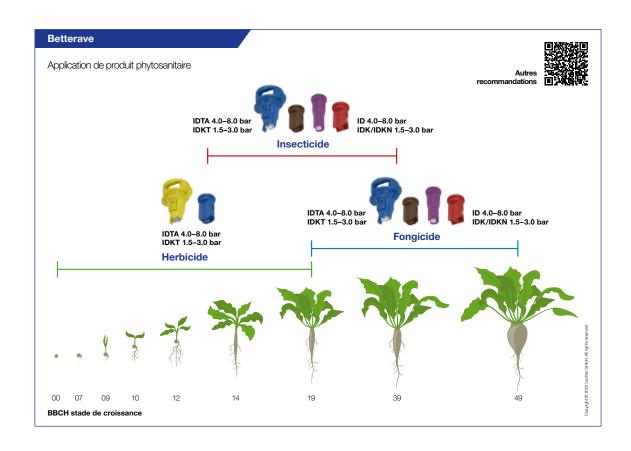

Les buses Lechler réduisant la dérive permettent d'exploiter les surfaces plus efficacement tout en protégeant les limites du champ et l'eau.

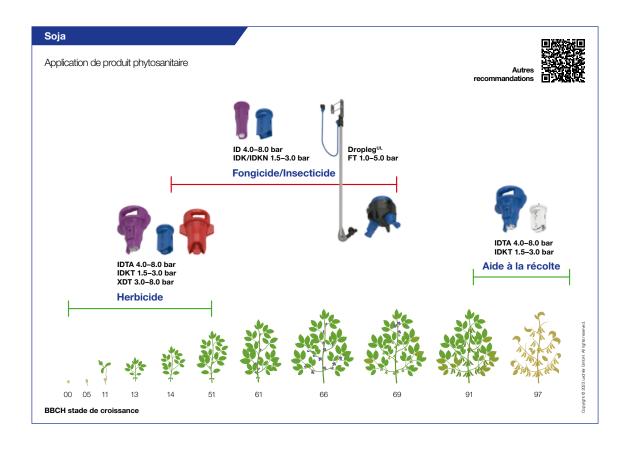


RECOMMANDATIONS DE BUSES POUR PRODUITS FONGICIDES / HERBICIDES









BUSES POUR GRANDES CULTURES VUE D'ENSEMBLE

	DON											
		Married Marrie			7							
Séries	ID	IDK/IDKN	IDTA	IDKT	PRE	AD	QS	LU	ST/SC	XDT	DF	FT
Angle de pulvérisation	120/90	IDK 120/90 IDKN 120	120	120	130	120/90	80	120/90	ST 110/80 SC 110	130	120	140/90
Information sur page	18	19	24	25	20	21		22		28		
Page du catalogue agriculture	46	48	62	64	50	52	56	54	58	60	66	70
Réduction de dérive	++	+	++	+	+++	0	0/-	0/-	_	+++		+(-)
Géométrie du jet	Å									Λ	Λ	

Grandes cultures

Plage de pre	ession recommandée [bar]	2/3* - 4 - 8	1**/ 1.5 - 3 - 6	1 - 4 - 8	1***/ 1.5 - 3 - 6	1.5 - 8	1.5 - 3 - 6	1.5 - 5	1.5 - 2.5 - 5	2 - 3 - 5	1.5 - 3 - 8	2 - 3 - 5	1 - 3 - 6(1 - 2 - 3)
	Incorporé au sol	••	••	••	••	••	••	••	••	•	••		••
Herbicides	Pré-levée	••	••	••	••	••	••	••	••	•	••		••
nerbicides	Post-levée (systémique)	••	••	••	••		••	••	••	•	••	0	•
	Post-levée (contact)	•	•	••	••		•	••	••	•	•	••	•
Fangisidas	Contact	•	•	••	••		•	••	••	•		••	•
Fongicides -	Systémique	••	••	••	••		••	••	••	•		•	•
Innesticidas	Contact	•	•	••	••		•	••	••	•		••	•
Insecticides	Systémique	••	••	••	••		••	••	••	•		•	•
	Engrais liquide	● (2 - 4)	• (1**/1.5 - 2.5)	O(1 – 4)	O(1***/1.5 - 2.5)	● (1.5 – 4)	(1.5 – 2.5)	O(1.5 – 2)	O(1.5 - 2)	O ₍₂₎			● (1 - 2)
Régula	ateurs de croissance	••	••	0	0		••	•	•	•		0	•
	Irrigation	••	••	••	••	••	••	•	•	•	••		

Grandes cultures et cultures spécialisées/en rangs

		•	•					
Plage de pre	ession recommandée [bar]							
	Incorporé au sol							
Herbicides	Pré-levée							
rierbicides	Post-levée (systémique)							
	Post-levée (contact)							
Familiates	Contact							
Fongicides	Systémique							
Insecticides	Contact							
Insecticides	Systémique							
	Engrais liquide							
Régula	ateurs de croissance							
	Irrigation							

Respecter les spécifications des fabricants de produits.

Calibres de buse: * ID-01/-015

** IDK 04/-05/-06/-08/-10 IDKN 03/-04

NOUVEAU		NOUVEAU		NOUVEAU										
Ž		Ž		Ž	_									
	0	7				NO.			3	9				
TR	ITR	VR	FD	FB	FL	FS	IS	IDKS	BN	OC (S)	Е	ID	IDK	AD
80/60	80	130	130	100	160	100	80	80	100	90	80	90	90	90
							26	27			23	18	19	21
78	80	82	84	86	90	88	94	96	98	100	104	72	74	76
	++	+++	+++	+++	+++	+++	++	+	_	_	_	++	+	0
	I						ı							
3 - 8	3-5-10	2 - 8	1.5 - 4	1.5 - 4	1 - 5	1 - 3***/4	2-4-8	1*****/1,5 - 3 - 6		1.5 - 2.5 - 5		2-8	1.5 - 8	1.5 - 3 - 6
0	0						••	••		••		••	••	••
0	0						••	••		••		••	••	••
••							•	•		••		•	•	•
••	0						•	•		••		•	•	•
•	•						••	••		••		••	••	••
••	0						•	•		••		•	•	•
•	•						••	••		••		••	••	••
	● (3 – 5)	••	••	••	••	••	● (2 – 4)	(1*****/1.5 - 2.5)		O(1.5 – 2)		● (2 – 4)	1.5 – 2.5)	● (1.5 – 2.5)
0	0						••	••		•		••	••	••
	•	••	••	••	•	•	••	••		•		••	••	••
3 - 8							2 - 4 - 8	1*****/ 1,5 - 3 - 6	1 - 2 - 4 - 6	1.5 - 2.5 - 5	1 - 3 - 4			
0							••	••	••	••	••			
0							••	••	••	••	••			
0							••	••	••	••	••			
••							•	•	••	••	••			
••							•	•	••	••	••			
•							••	••	••	••	••			
••							•	•	••	••	••			
•							••	••	••	••	••			
							(2 - 4)	(1*****/1.5 - 2.5)	O(1 - 2)	O(1.5 - 2)	O(1 - 2)			
0							••	••	••	••	•			
							••	••	••	•	•			

-- = pas de réduction de -= réduisant légèrement dérive

la dérive

o = réduisant la dérive

+ = réduisant beaucoup la dérive

la dérive

+ + = réduisant fortement + + + = réduisant extrêmement la dérive

= très bien adapté

= bien adapté

O = moins bien adapté

Bon à savoir

Vous pouvez trouver de plus amples informations dans notre catalogue principal « Buses et accessoires de pulvérisation agricoles » et en ligne sur www.lechler.fr.

Buses à jet plat à injection d'air ID-120/ID-90

Production agricole

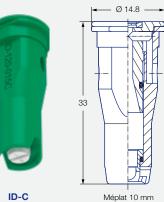
Dimensions en mm.

- Buse à jet plat à injection d'air
- Dérive extrêmement faible

Avantages

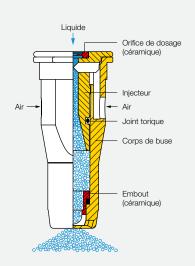
- Réduction de dérive de 90 % pour : ID-120-025 à -06
- Stabilité de la dérive sur une large plage de pression grâce à la conception d'un injecteur long
- Application en temps opportun, même dans des conditions météorologiques
- Augmentation de la cadence de travail grâce à une utilisation flexible sur une large plage de pression – adaptation en modifiant la vitesse de pulvérisation et le débit en l/ha sans changement de buse
- Très bonne couverture et pénétration des cultures
- Convient pour PWM

Approbation réduction de la dérive par le JKI: 90/75/50%


G 1965, G 1966, G 1968, G 1969, G 1970, G 1971, G 1972, G 1973, G 1974, G 2088,

Homologation JKI pour équipement mixte avec buse de bordure IS.

Liste actuelle: www.lechler.com/de-en/ service/loss-reducing



Séries ID

L'injecteur peut être retiré sans outils

Formation de bulles

Utilisation:

Produits phytopharmaceutiques et régulateurs de croissance

Application d'engrais

Pour l'application en bordure, peut être combinée avec la buse de bordure IS 80

Gazons sportifs

Données techniques :

Calibres de buse

01 - 10

Angles de pulvérisation

Tailles de gouttelette

Ultra grossières -

90°, 120°

moyennes

Matériaux POM, céramique

Méplat 10 mm

Plages de pression

• ID-01 à -015:

3-**4-8** bar

ID-02 à -10: 2-4-8 bar

UAN: 2-4 bar

Recommandation de filtres

- 80 M 01
- 60 M 015-04
- 25 M 05-10

Buses compactes à jet plat à injection d'air IDK 120/IDK 90 / IDKN 120

Production agricole

Dimensions en mm.

- · Buse à jet plat à injection d'air
- Dérive très faible

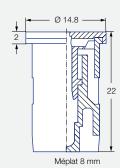
Avantages

- Réduction de dérive de 95 % pour : IDK 90-015C à -04C avec un espacement des buses de 25 cm
- Réduction de dérive de 90 % pour : IDK 120-05 à -06 et IDKN 120-03 à -04
- Design compact
- · Large plage de tailles de gouttelettes, allant d'ultra grossière à moyenne.
- Très faible dérive et réduction des pertes dans la plage de pression jusqu'à 3,0 bar (selon la taille)
- Alternative peu coûteuse aux buses standard conventionnelles
- Très bonne couverture et pénétration
- Convient pour PWM

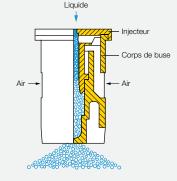
Approbation réduction de la dérive par le JKI: 90/75/50%

G 1661, G 1662, G 1663, G 1683, G 1718, G 1799, G 1800, G 1801, G 1802, G 1936, G 2300, G 2301, G 2311

Homologation JKI pour équipement mixte avec buse de bordure IDSK.



Liste actuelle : www.lechler.com/de-en/ service/loss-reducing


IDK

IDK-C

IDKN Caractéristique IDKN: Corps de buse avec bande blanche

Séries IDK/IDKN

L'injecteur peut être retiré sans outils

Utilisation:

Produits phytopharmaceutiques et régulateurs de croissance

Application d'engrais liquide

Cadre de pulvérisation

Pour l'application en bordure, peut être combinée avec la buse de bordure IDKS 80

Gazons sportifs

Pulvérisateur à dos

Serre

Données techniques :

Calibres de buse 01 - 10

Angles de pulvérisation 90°, 120°

Matériaux POM. ceramic

Plages de pression

- IDK 01 à -10.
- 1-1.5-3-6 bar
- IDKN 03 à -04: 1-**1.5-3**-6 bar
- UAN: 1.0–2.5 bar

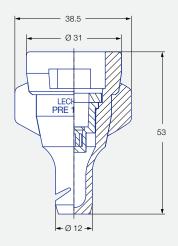
- 80 M 01
- 60 M 015-04
- 25 M 05-10

Tailles de gouttelette Ultra grossières moyennes

Méplat 8 mm

Buse à jet plat pour pré-levée PRE

Production agricole


Dimensions en mm.

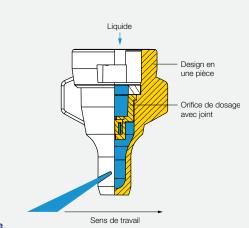
- Buse à jet plat à très faible dérive
- Pour une application rapide d'herbicides de pré-levée

Avantages

- Réduction de dérive de 95 % de 1,5 à
- Facilité de gestion des ZNT
- Large plage de pression de 1,5 à 8
- Cadence de travail élevée grâce à une adaptation simple du débit en l/ha et de la vitesse de pulvérisation
- Application en temps opportun, même dans des conditions météorologiques
- Buse avec écrou intégré avec système à baïonnette MULTIJET (joint inclus)
- Convient pour PWM

Séries PRE

Approbation réduction de la dérive par le JKI: 95/90%


G 1981

Liste actuelle : www.lechler.com/de-en/ service/loss-reducing

Orifice de dosage démontable

Utilisation:

Herbicide pré-levée

Application d'engrais liquide

Gazons sportif

Données techniques :

Calibre de buse 05

Angle de pulvérisation

Matière POM

Plages de pression

Filtre recommandé 25 M

Taille de gouttelette Шшш Ultra grossières

• 1.5-8 bar

Buses à jet plat anti-dérive AD 120/AD 90

Production agricole

Entretien des sols

Dimensions en mm.

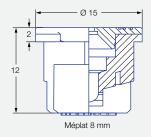
• Buse à jet plat à dérive limitée

Avantages

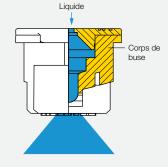
- Application avec des gouttelettes moyennes à grossières, même avec de faibles taux de l/ha
- Atomisation optimisée et proportion de fines gouttelettes réduite grâce à la préchambre intégrée
- L'orifice de dosage peut être retiré sans outils
- affleurant avec un écrou tournant

 L'orifice de dosage peut être retiré pour
- le nettoyageDesign compact

NOUVEAU • L'orifice de dosage a un contact


Convient pour PWM

ΑD


AD-C

Séries AD

Orifice de dosage démontable

Utilisation:

Produits phytopharmaceutiques et régulateurs de croissance

Pulvérisateur à dos

Serre

Données techniques :

Calibres de buses 015-04

Angles de pulvérisation 90°, 120°

Matériaux POM, céramique

Plages de pression 1.5-3-6 bar

Filtres recommandés

- 80 M 015
- 60 M 02-04

Tailles de gouttelettes Grossières - fines

Méplat 8 mm

Buses à jet plat universelles LU 120/LU 90

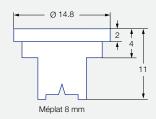
Production agricole

Dimensions en mm.

• Buse universelle à jet plat avec spectre de fines gouttelettes

Avantages

- Plage de pression étendue
- Faible dérive dans la plage de pression jusqu'à 2,5 bar
- Application par fines gouttelettes
- Haute qualité de fabrication
- Convient pour PWM



LU

LU-C

LU-S

Séries LU

Utilisation:

Produit phytopharmaceutiques et régulateur de croissance

Pour l'application en bordure, peut être combinée avec la buse de bordure OC

Pulvérisateur à dos

Serre

Données techniques :

Calibres de buse

01-08

Angles de pulvérisation

Matériaux POM, céramique, acier inoxydable

Plages de pression **1.5-2.5**-5 bar

Filtres recommandés

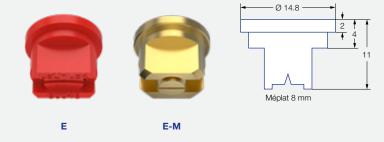
- 80 M 01-015
- 60 M 02-04
- 25 M 05-08

Tailles de gouttelettes Grossières - très fines

Méplat

Buses à jet plat uniforme Even

Production agricole


Entretien des sols

Dimensions en mm.

- Buse à jet plat avec distribution de liquide rectangulaire
- Pour pulvérisation en bandes et en rangs

Avantages

- Réduction de dérive de 90 % pour 8002 à 8004 E
- Angle de pulvérisation entièrement formé à partir de 1 bar
- Répartition uniforme des substances actives sur toute la largeur de bande
- Distances de pulvérisation extrêmement réduites possibles
- Convient pour PWM

Approbation réduction de la dérive par le JKI : 90 %

G 1435, G 1436, G 1437, G 1438

Liste actuelle : www.lechler.com/de-en/ service/loss-reducing

Hauteur de pulvérisation	Largeur traitée	Quantité de produit appliquée¹ [%], à espacement de rang A									
H [cm]	B [cm]	50 cm	75 cm	100 cm							
7	10	20	13	10							
10	15	30	20	15							
13	20	40	27	20							
16	25	50	33	25							

¹ Pourcentages, par rapport au traitement de toute la surface.

Réduction du taux d'application

En fonction de la largeur des bandes et des rangs, la quantité de bouillie pour la pulvérisation en bandes s'élève à 10-50 % de la quantité pour le traitement sur toute la surface. Formule de calcul pour la pulvérisation en bandes et en rangs, voir application Lechler.

Utilisation :

Pulvérisateur à dos

Pulvérisation en bandes

Données techniques :

Calibres de buse

01-08

Angle de pulvérisation

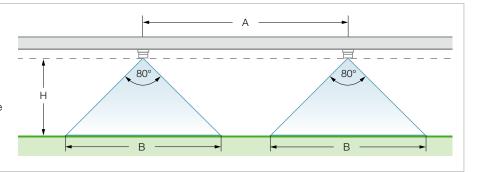
Matériaux Laiton, POM

Plages de pression 1-3-4 bar

Filtres recommandés

- 80 M 01-015
- 60 M 02-04
- 25 M 05-08

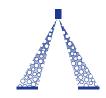
Tailles de gouttelettesTrès grossières - très fines



Méplat 8 mm

Ajustement des buses

Hauteurs de pulvérisation très faibles (H) possibles avec des buses à distribution rectangulaire E. La dérive peut être largement évitée.


La largeur de bande (B) peut être ajustée en modifiant la hauteur de pulvérisation (H) et/ou en tournant l'axe de pulvérisation.

Asymétrique et injection d'air Buses à double jet plat IDTA

Production agricole

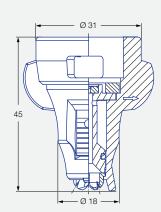
Dimensions en mm.

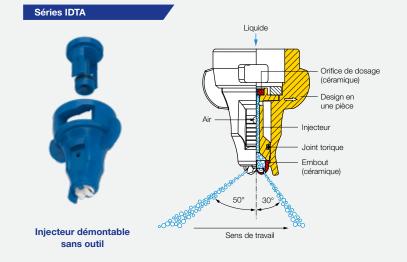
- Buse à double jet plat asymétrique à injection d'air
- Dérive extrêmement faible

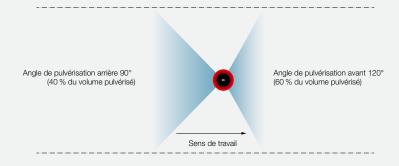
Avantages

- Réduction de dérive de 95 % pour : IDTA 120-05 C et 90 % pour : IDTA 120-025 C à -04 C
- Idéal pour les vitesses de pulvérisation plus élevées grâce aux angles de pulvérisation 30°/50°
- Dépôt uniforme grâce à une répartition de débit 60/40
- · Largeur de pulvérisation identique sur la zone cible grâce à l'angle de pulvérisation de 90°/120°
- Mouillage optimal grâce à un spectre de gouttelettes plus fines vers l'avant
- Spectre de gouttelettes plus grossières réduisant la dérive vers l'arrière
- Protection de l'utilisateur grâce au démontage/pose de l'injecteur avec des gants de protection et sans outils
- Buse avec écrou intégré, système à baïonnette MULTIJET (joint inclus)
- Convient pour PWM

Approbation réduction de la dérive par le JKI: 95/90/75%


G 2015, G 2016, G 2017, G 2018, G 2019, G 2020, G 2021, G 2022, G 2043


Homologation JKI pour équipement mixte avec buse de bordure IS.



Liste actuelle: www.lechler.com/de-en/ service/loss-reducing

Utilisation:

Produit phytopharmaceutiques

Pour l'application en bordure, peut être combinée avec la buse de bordure IS 80

Gazons sportifs

Données techniques :

Calibres de buse 02 - 08

Angle de pulvérisation 120° front/ 90° rear

Matière Céramique

Plages de pression 1-4-8 bar

Filtres recommandés

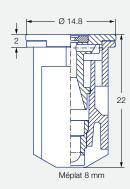
- 80 M 02
- 60 M 025-08

Tailles de gouttelettes Ultra grossières - grossières

Compacte, symétrique et injection d'air Buses à double jet plat IDKT

Production agricole

Dimensions en mm.


 Buse à double jet plat et injection d'air à très faible dérive

Avantages

- · Dépôt optimal grâce au double jet plat symétrique 30°/30°
- Ombre de pulvérisation réduite
- Réduction de dérive de 90 % pour : IDKT 120-02 à -06
- Design compact
- Faible dérive et réduction des pertes dans la plage de pression jusqu'à 3 bars (selon le calibre)
- Convient pour PWM

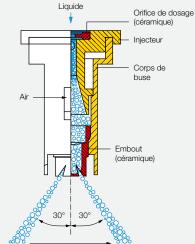
IDKT-C

Séries IDKT

IDKT

G 1836, G 1837, G 1865, G 1882, G 1883, G 1884, G 1911, G 1912, G 1932, G 1933, G 1934, G 1935, G 1937

Homologation JKI pour équipement mixte avec buse de bordure IDKS.



Liste actuelle: www.lechler.com/de-en/ service/loss-reducing

Injecteur démontable sans outil

Sens du travail

Utilisation:

Produit phytopharmaceutiques

Cadre de pulvérisation

Pour l'application en bordure, peut être combinée avec la buse de bordure IDKS 80

Gazons sportifs

Données techniques :

Serre

Calibres de buse

015-10

Angle de pulvérisation 120°

Matériaux POM. céramique

Plages de pression

1-**1.5-3**-6 bar

- 80 M 015-02
- 60 M 025-08
- 25 M 10

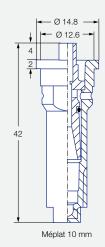
Tailles de gouttelettes Ultra grossières -

moyennes

Méplat 8 mm

Buses à injection d'air à jet plat décentré IS 80

Production agricole


Dimensions en mm.

- Buse décentrée à injection d'air pour la pulvérisation en bandes et des bordures
- Dérive extrêmement faible

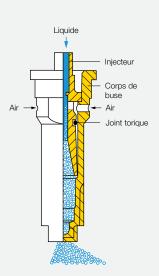
Avantages

- Réduction de la dérive de 90 % pour la pulvérisation en bande avec IS 80-03
- Même classe de réduction de dérive JKI en combinaison dans la rampe avec les buses ID et IDTA
- Débit adapté pour une répartition transversale optimale en combinaison de buses ID et IDTA de même calibre
- Jet asymétrique (20°/60° par rapport à l'axe)
- Application précise en bordures des cours d'eau et des limites des champs
- Protection optimale des cultures voisines ou lors d'application d'herbicide sous les feuilles
- Convient pour PWM

Séries IS 80

Approbation réduction de la dérive par le JKI: 90/75/50%

G 1753, G 1754, G 1755, G 1999, G 2000, G 2087


Approuvé par le JKI en combinaison avec les buses ID / IDTA de même calibre.

Liste actuelle: www.lechler.com/de-en/ service/loss-reducing

Iniecteur démontable sans outils

Utilisation:

Buse de bordure

Pulvérisation en bande

Rampe verticale

Cadre de pulvérisation

Données techniques :

Calibres de buse 02-06

Angle de pulvérisation

Matière POM

Plages de pression

- Pulvérisateur agricole/ pulvérisateur sous feuillage : 2-4-8 bar
- Rampe verticale : 2-8-15 bar

Filtres recommandés

- 60 M 02-04
- 25 M 05-06

Tailles de gouttelettes Ultra grossières moyennes

Méplat 10 mm

Buses compactes à injection d'air à jet décentré IDKS 80

Production agricole

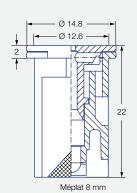
Dimensions en mm.

- Buse compacte décentrée à injection d'air pour la pulvérisation en bandes et des bordures
- Dérive très faible

Avantages

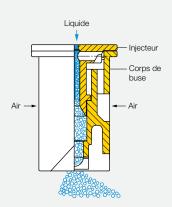
- Réduction de la dérive de 90 % pour la pulvérisation en bande avec IDKS 80-025 à -06
- Même classe de réduction de dérive JKI en combinaison dans la rampe avec les buses IDK / IDKN / IDKT
- Débit adapté pour une répartition transversale optimale en combinaison de buses IDK, IDKN et IDKT de même calibre
- Application précise des bordures des cours d'eau et des limites des champs
- Protection optimale des cultures voisines ou lors d'application d'herbicide sous les feuilles
- Convient pour PWM

JKI approval as loss-reducing: 90/75/50%


G 1786, G 1787, G 1788, G 1789, G 1998, G 2139, G 2140, G 2141, G 2142, G 2143

Approuvé par le JKI en combinaison avec les buses IDK / IDKN / IDKT de même

Current list at: www.lechler.com/de-en/ service/loss-reducing



Séries IDKS 80

Injecteur démontable sans outils

Utilisation:

Buse de bordure

Protection des plantes en viticulture, vergers et cultures spécialisées

Rampe verticale

Cadre de pulvérisation

Pulvérisateur à dos

Données techniques :

Calibres de buse 015-06

Angle de pulvérisation

Matière POM

Plages de pression

- Pulvérisateur agricole / pulvérisateur sous feuillage :
- 1-**1.5-3**-6 bar
- Rampe verticale : 1-**8-15** bar

Filtres recommandés

- 60 M 015-04
- 25 M 05-06

Tailles de gouttelettes Ultra grossières moyennes

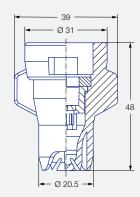
Méplat 8 mm

Buses à double jet plat XDT 130

Dimensions en mm.

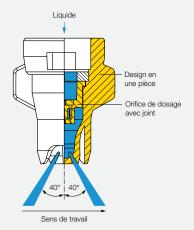
NOUVEAU

Production agricole


- Réduction extrême de la dérive sur toute la plage de pression
- Double jet plat symétrique 40° / 40° vers l'avant / arrière

Avantages

- Cadence de travail élevée grâce à une large plage de contrôle
- Dépôt optimal avec ombre de pulvérisation réduite
- Buse avec écrou intégré, système à baïonnette MULTIJET (joint inclus)
- Pour une application rapide, même dans des conditions météorologiques défavorables
- Convient pour PWM


Séries XDT 130

Orifice de dosage avec joint, démontable sans outils

Utilisation:

Produit phytopharmaceutiques

Gazons sportifs

Données techniques :

Calibres de buse 02-08

Angle de pulvérisation

Matière POM

Plage de pression 1.5-8 bar

Filtres recommandés 60 M 02-08

Tailles de gouttelettes Ultra grossières -Extrêmement grossières

Accessoires Clapets anti-retour à bille et filtres de buse

D	ésignation	Pression d'ouverture [bar]	Taille Mesh	D [mm]	L [mm]	Matière	Surface de filtre (sans joint)	Référence n°
		0.5	25 M	14.8	21.5	POM	628 mm²	065.266.56.00.00
		0.5	60 M	14.8	21.5	POM	628 mm ²	065.265.56.00.00
Clapet	L L	0.5	25 M	14.8	21.0	Laiton	430 mm ²	065.261.30.00.00
anti retour¹		0.5	60 M	14.8	21.0	Laiton	430 mm ²	065.260.30.00.00
	<u> </u>	2.5	25 M	14.8	21.5	POM	628 mm ²	065.266.56.02.00
	← D → ← D →	2.5	60 M	14.8	21.5	POM	628 mm ²	065.265.56.02.00
Clapet anti retour (sans filtre)		0.5		14.8	18.5	РОМ	-	065.266.56.01.00
		-	25 M	14.8	21.5	РОМ	628 mm²	065.256.56.00.00
Filtre de buse ¹		-	60 M	14.8	21.5	РОМ	628 mm²	065.257.56.00.00
	D - J	-	80 M	14.8	21.5	РОМ	430 mm²	A424.310.50.00.00
Filtre à fente	L L	-	25 M	14.8	21.0	РОМ	430 mm²	095.009.56.13.43
		-	25 M	14.8	8.5	Cu/Monel	184 mm²	065.252.26.00.00
Filtre coupole	- I	-	25 M	14.8	8.5	PA/Monel	184 mm²	200.029.26.00.03
	D	-	60 M	14.8	8.5	PA/Inox	184 mm²	200.029.1C.01.03
Filtre de buse avec joint intégré,	1	-	25 M	18.0	19.2	POM, Santoprene	628 mm²	065.269.7J.00.00
pour TWISTLOC		-	60 M	18.0	19.2	POM, Santoprene	628 mm²	065.268.7J.00.00
Filtre de buse avec joint intégré, pour MULTIJET		-	60 M	18.8	19.2	POM, Santoprene	628 mm²	065.268.7J.10.00

 $^{^{\}rm 1}$ Important : Code couleur pour les filtres et les clapets anti-retour selon ISO 19732:2007.

Accessoires

Écrous à baïonnette et adaptateur MULTIJET et origine non Lechler

MULTIJET	Désignation		Code couleur	Référence n°
_	Écrou à baïonnette	Écrou Combi pour buses	red	Y825.3C0.00.00.00
	joins inclus YG00.002.02.00.00 pour combinaison avec sys-	avec méplat 8 et 10 mmm ID, IDK, IDKN, IDKT, AD, QS,	blue	Y825.3C0.00.30.00
	tème MULTIJET, par exemple :	LU, ST, DF, IS, IDKS, OC, E, FL, FS	yellow	Y825.3C0.00.10.00
At the second		FL, F3	lavender	Y825.3C0.00.80.00
			green	Y825.3C0.00.20.00
			brown	Y825.3C0.00.70.00
			black	Y825.3C0.00.40.00
			gray	Y825.3C0.00.90.00
			white	Y825.3C0.00.50.00
THEFT	-	Version renforcée en fibre de verre		
		Méplat 8	black	A402.900.01.A0.00
No.		Méplat 10	black	A402.902.01.A0.00
	8.5	Pour buses à cône creux TR, ITR, FT, BN	black	A402.904.10.00.00
	17 10.0 71	Pour buses à jet miroir FT	blue	A402.908.40.00.00
Marquage sur demande.	Dimensions en mm.	Écrou à baïonnette 1/4" NPT femelle	black	A402.910.01.00.00
		Écrou bouchon	black	A402.909.00.00.00

Origine non-Lechler	Désignation		Code couleur	Référence n°
Écrou baïonnette Type H	Système : - Hardi Joint inclus (Méplat 8/10 mm : 095.015.73.06.36)	Écrou Combi pour buses avec méplat 8 et 10 mm ID, IDK, IDKN, IDKT, AD, QS, LU, ST, DF, IS, IDKS, OC, E, FL, FS	black	090.078.56.00.40
	Joint moulé (en combinaison avec filtre de buse 065.256.56.00.00 ou 065.257.56.00.00, voir Page 30)			095.015.7J.04.34
Écrou baïonnette Type R	Système : - Rau Joint inclus (095.015.73.04.61) À partir de l'année de	Pour buses avec méplat 8 mm IDK, IDKN, IDKT, AD, QS, LU, ST, IDKS, OC, E	red	095.016.56.05.90
	fabrication 2000 Voir écrou baïonnette au-dessus	Pour buses avec méplat 10 mm ID, DF, IS, FL, FS	lavender	095.016.56.05.97

Adaptateur intermédiaire et extension

Adaptateur intermédiaire¹

Système TWISTLOC Lechler 092.163.56.00.22 Extension: 22 mm

Système Rau 092.163.56.00.21 Extension: 20 mm Système Hardi 092.163.56.00.20 Extension: 17 mm

Adaptateur d'extension et embout à baïonnette¹

Système MULTIJET 092.163.56.00.23 Extension: 32 mm

Embout à baïonnette MULTIJET 092.163.56.00.26

¹ Joint inclus.

Aides utiles

Kit électrique de buses de bordure

- Vanne 3 voies compacte pour modernisation avec porte-buses intégré
- Peut être commandé électriquement depuis le siège du conducteur
- Idéalement adapté aux buses FB en combinaison avec des buses FD, aux buses IS en combinaison avec des buses ID, aux buses IDK en combinaison avec des buses IDKS, aux buses IDTA en combinaison avec des buses IS et aux buses IDKT en combinaison avec des buses IDKS

Avantages

- Commutation sans démontage
- Commutation rapide en moins d'une seconde
- Besoin d'énergie minimum, aucune consommation d'énergie pendant la pulvérisation
- Toutes les pièces en plastique ou en acier inoxydable résistant aux engrais liquides

Référence n°: 065.290.00.00.00

Bon à savoir

Vous pouvez trouver des informations détaillées dans nos « Instructions de montage du kit de vanne de bordure électrique » sur **www.lechler.com/de-en/support**.

Anémomètre Pocketwind IV

- Écran rétroéclairé
- Boîtier étanche et antichoc
- Cordon
- Couverture rigide intégrée pour une protection contre les dommages et la poussière
- Filetage pour trépied

Avantages

- Capteur d'humidité auto-calibrant
- Le couvercle rigide protège les capteurs de mesure contre les dommages
- Mesure tous les paramètres pertinents

Fonctions de mesure

- Humidité relative
 - Point de rosée
 - $-\Delta T$
 - Thermomètre à bulbe humide
- Vitesse du vent :
 - Maximale
 - Moyenne
 - Unités commutables m/s, km/h, fpm, mph, kn et bft
- Unités de température / refroidissement éolien °C et °F, commutables
- Direction du vent :
 - Boussole électronique
 - Girouette intégrée

Référence n°

ZWIN.DME.SS.ER.01

Outil de calcul de taille de gouttelettes / Outil de calcul de dosage

Référence n°: 095.009.50.12.11

Papier hydrosensible

Dimension: 76 x 26 mm

Référence n°: ZWSP.76X.26.00.00

Brosse de nettoyage de buse

Référence n°: 095.009.50.10.89

Aligneur de buse

Référence n°: 065.231.02.00.00

Clé d'assemblage de buse

Référence n°: 092.164.40.00.99

Sachet d'échantillons

Grandes cultures

Référence n°: 092.251.00.00.00 / 872585

Viticulture, vergers et cultures spécialisées Référence n°: 092.251.00.10.00 / 872586

Modèle d'ajustement pour Dropleg^{UL}

Référence n° : 092.163.42.10.30

Table de pulvérisation pour grandes cultures

DIN A4

Table de pulvérisation pour grandes cultures UAN

DIN A4

Table de pulvérisation pour viticulture, vergers et cultures spécialisées

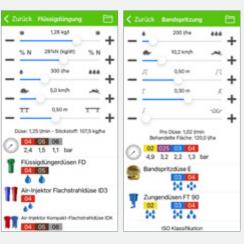
DIN A5

Application calcul et choix de buses

L'application Lechler pour buses agricoles vous permet de sélectionner facilement la buse adaptée à votre application.

En fonction de la vitesse de pulvérisation et du débit d'application sélectionnés, l'outil vous indique les buses appropriées et les catégories de taille de gouttelettes correspondantes. Cela vous permet de trouver rapidement la buse Lechler adaptée et d'optimiser ainsi votre application.

Toutes les valeurs sont basées sur des mesures réalisées avec de l'eau.



Apple

Android

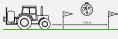
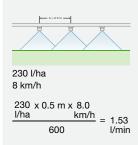


Table de pulvérisation Informations importantes en un coup d'œil

Pression ID 01-015: 3.0-4.0-8.0 ID 02-10: 2.0-4.0-8.0 IDTA 02-08: 1.0-4.0-8.0 1.0-**1.5-3.0**-6.0 IDK: IDKN: **1.0-3.0**-6.0 IDKT 015-025:1.5-3.0-6.0 **IDKT 03-010: 1.0-3.0**-6.0 LU: **1.5-2.5**-5.0 ST/SC: **2-3**-5 DF: **2-3**-5 **1.5-3.0**-6.0 Filtre de buse (M = mesh/pouce) Général : 60 M Exceptions: **80 M** ST 90-01-015; IDKT 015-02; LU 01-015; AD 015; DF 03 25 M ID 05-10; IDK 05-10; LU 05-08; ST/SC 05-08 Hauteur


80°/90° h = 60 - **75** - 90 cm **110°/120°** h = 40 - **50** - 70 cm

Vitesse

60 s = 6.0 km/h 45 s = 8.0 km/h36 s = 10.0 km/h

Exemple de calcul

			ISC	253	358			(bar y	[l/min]				[l/h	al –	0.5m				
				لتلتلتا				bar											
	ID	IDTA	IDKN	IDK	IDKT	LU	AD			5.0	6.0	7.0	8.0	10.0	12.0	16.0	20.0	25.0	30.0
	טו	IDIA	IDKN	וטוג	IDKI	LU	AD			km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h
				EC				1.0	0.23	55	46	39	35	28	23	17			
				VC		F		1.5 2.0	0.28	67	56	48	42 48	34	28	21	17 19	13 15	11
				VC VC		F		2.5	0.32	77 86	64 72	55 62	54	43	36	27	22	17	13
	EC			VC		F		3.0	0.39	94	78	67	59	47	39	29	23	19	16
-01	EC			VC		F		3.5	0.42	101	84	72	63	50	42	32	25	20	17
	VC			C		F		4.0	0.45	108 115	90	77 82	68 72	54 58	45	34	27	22	18
	VC			С		VF		5.0	0.51	122	102	87	77	61	51	38	31	24	20
	VC			М				6.0	0.55	132	110	94	83	66	55	41	33	26	22
	С							7.0	0.60	144	120	103	90	72	60	45	36	29	24
	U			FC				8.0	0.64	154	128	110	96	77	64	48	38	31	26
				EC VC	UC	F	М	1.0	0.34	82 101	68 84	58 72	63	50	34 42	26 32	25	20	17
				VC	EC	F	М	2.0	0.48	115	96	82	72	58	48	36	29	23	19
				VC	EC	F	М	2.5	0.54	130	108	93	81	65	54	41	32	26	22
	VC			C	VC	F	M F	3.0	0.59	142 151	118	101	89 95	71 76	59 63	44	35	28 30	24
-015	VC			С	VC	F	F	4.0	0.68	163	136	117	102	82	68	51	41	33	27
	VC			С	VC	F	F	4.5	0.72	173	144	123	108	86	72	54	43	35	29
	VC			C	VC	VF	F	5.0	0.76	182	152	130	114	91	76	57	46	36	30
	С			М	VC		Г	7.0	0.83	199 216	166 180	142 154	125 135	100	90	62 68	50 54	40	33
	С							8.0	0.96	230	192	165	144	115	96	72	58	46	38
		UC		EC				1.0	0.46	110	92	79	69	55	46	35	28	22	18
		UC		VC	EC	М	M	1.5	0.56	134	112	96	84	67	56	42	34	27	22
	EC EC	UC		VC VC	EC EC	F	M	2.0	0.65	156 175	130 146	111	98	78 88	65 73	49 55	39 44	31	26 29
	VC	VC		VC	VC	F	М	3.0	0.80	192	160	137	120	96	80	60	48	38	32
-02	VC	VC		VC	VC	F	F	3.5	0.86	206	172	147	129	103	86	65	52	41	34
	VC	VC		C	VC	F	F	4.0	0.92	221	184 196	158 168	138	110	92	69 74	55 59	44	37
	VC	VC		С	С	F	F	5.0	1.03	247	206	177	155	124	103	77	62	49	41
	С	VC		М	С		F	6.0	1.13	271	226	194	170	136	113	85	68	54	45
	C M	VC						7.0 8.0	1.22	293 312	244	209	183 195	146	122	92	73 78	59 62	49 52
	IVI	UC		EC				1.0	0.57	137	114	98	86	156	57	43	34	27	23
		UC		VC	EC	М		1.5	0.70	168	140	120	105	84	70	53	42	34	28
	UC	UC		VC	VC	F		2.0	0.81	194	162	139	122	97	81	61	49	39	32
	UC EC			VC	VC VC	F		2.5	0.91	218	182	156	137	109	91	68	55	44	36
	EC	EC		C	VC	F		3.0	0.99	238 257	198 214	170	149	119 128	99	74 80	59 64	48 51	40
-025	VC	VC		С	VC	F		4.0	1.15	276	230	197	173	138	115	86	69	55	46
	VC	VC		С	VC	F		4.5	1.22	293	244	209	183	146	122	92	73	59	49
	VC	VC		C M	C M	F		5.0 6.0	1.28	307	256 280	219	192	154 168	128	96	77 84	61 67	51 56
	VC	VC						7.0	1.52	365	304	261	228	182	152	114	91	73	61
	VC	VC						8.0	1.62	389	324	278	243	194	162	122	97	78	65
		UC		EC	UC			1.0	0.69	166	138	118	104	83	69	52	41	33	28
	UC	UC EC	EC EC	VC VC	EC EC	M F	M	1.5 2.0	0.84	202	168 194	144	126 146	101	97	63 73	50 58	40	34
	UC		VC	VC	EC	F	M	2.5	1.08	259	216	185	162	130	108	81	65	52	43
	EC	VC	VC	VC	VC	F	М	3.0	1.19	286	238	204	179	143	119	89	71	57	48
-03	EC	VC	VC	VC	VC	F	М	3.5	1.28	307	256	219	192	154	128	96	77	61	51
	VC VC	VC	VC	C	VC VC	F	F	4.0 4.5	1.37	329 350	274	235 250	206	164 175	137	103	82 88	66 70	55 58
	VC	VC	C	С	VC	F	F	5.0	1.53	367	306	262	230	184	153	115	92	73	61
	VC	VC	С	М	С		F	6.0	1.68	403	336	288	252	202	168	126	101	81	67
	VC	VC						7.0	1.81	434	362	310	272	217	181	136	109	87	72
	VC	VC						8.0	1.94	466	388	333	291	233	194	146	116	93	78

			ISC	253	58				[l/min]						0.5m _j				
			ı					bar					[l/h	a] <u></u>	0.5111				
	ID	IDTA	IDKN	IDK	IDKT	LU	AD			5.0 km/h	6.0 km/h	7.0 km/h	8.0 km/h	10.0 km/h	12.0 km/h	16.0 km/h	20.0 km/h	25.0 km/h	30.0 km/h
		UC	UC	UC	EC			1.0	0.91		182		-	109	91			44	
		UC	EC	EC	EC	М	С	1.5	1.12	218	224	156 192	137	134	112	68 84	55 67	54	36 45
	EC	EC	EC	EC	VC	M	С	2.0	1.12	310	258	221	194	155	129	97	77	62	52
	EC	EC	VC	VC	VC	F	М	2.5	1.44	346	288	247	216	173	144	108	86	69	58
	EC	VC	VC	VC	VC	F	M	3.0	1.58	379	316	271	237	190	158	119	95	76	63
-04	EC	VC	VC	VC	VC	F	M	3.5	1.71	410	342	293	257	205	171	128	103	82	68
	VC	VC	VC	С	VC	F	M	4.0	1.82	437	364	312	273	218	182	137	109	87	73
	VC	VC	VC	С	С	F	М	5.0	2.04	490	408	350	306	245	204	153	122	98	82
	VC	VC	С	С	С		М	6.0	2.23	535	446	382	335	268	223	167	134	107	89
	VC	VC						7.0	2.41	578	482	413	362	289	241	181	145	116	96
	VC	С						8.0	2.58	619	516	442	387	310	258	194	155	124	103
		UC		EC	UC			1.0		274	228	195	171	137	114				46
		UC		EC	EC	М		1.0	1.14	334	278	238	209	167	139	104	68 83	55 67	56
	UC	EC		VC	VC	M		2.0	1.61	386	322	276	242	193	161	121	97	77	64
	UC	EC		VC	VC	F		2.5	1.80	432	360	309	270	216	180	135	108	86	72
	EC	VC		VC	VC	F		3.0	1.97	473	394	338	296	236	197	148	118	95	79
-05	EC	VC		VC	VC	F		3.5	2.13	511	426	365	320	256	213	160	128	102	85
	VC	VC		VC	VC	F		4.0	2.28	547	456	391	342	274	228	171	137	109	91
	VC	VC		С	С	F		5.0	2.55	612	510	437	383	306	255	191	153	122	102
	VC	VC		С	С			6.0	2.79	670	558	478	419	335	279	209	167	134	112
	VC	С						7.0	3.01	722	602	516	452	361	301	226	181	144	120
	VC	С						8.0	3.22	773	644	552	483	386	322	242	193	155	129
		UC		EC	UC			1.0	1.36	326	272	233	204	163	136	102	82	65	54
		UC		VC	EC	М		1.5	1.67	401	334	286	251	200	167	125	100	80	67
	EC	EC		VC	VC	M		2.0	1.93	463	386	331	290	232	193	145	116	93	77
	EC	EC		VC	VC	F		2.5	2.16	518	432	370	324	259	216	162	130	104	86
	EC	VC		VC	VC	F		3.0	2.36	566	472	405	354	283	236	177	142	113	94
-06	EC	VC		VC	VC	F		3.5	2.55	612	510	437	383	306	255	191	153	122	102
	VC	VC		С	VC	F		4.0	2.73	655	546	468	410	328	273	205	164	131	109
	VC	VC		С	С	F		5.0	3.05	732	610	523	458	366	305	229	183	146	122
	VC	VC		С	С			6.0	3.34	802	668	573	501	401	334	251	200	160	134
	VC	С						7.0	3.61	866	722	619	542	433	361	271	217	173	144
	VC	С						8.0	3.86	926	772	662	579	463	386	290	232	185	154
		UC		EC	EC			1.0	1.82	437	364	312	273	218	182	137	110	88	72
		UC		EC	EC	С		1.5	2.23	535	446	382	335	268	223	167	134	108	90
	EC	EC		VC	SG	М		2.0	2.58	619	516	442	387	310	258	194	154	124	104
	EC	VC		VC	SG	М		3.0	3.16	758	632	542	474	379	316	237	190	152	126
-08	VC	VC		VC	С	М		4.0	3.65	876	730	626	548	438	365	274	218	174	146
	VC	VC		С	С			6.0	4.47	1073	894	766	671	536	447	335	268	214	178
	VC	С						7.0	4.83	1159	966	828	725	580	483	362	290	232	192
	VC	С						8.0	5.16	1238	1032	885	774	619	516	387	310	248	206
				UC	UC			1.0	2.27	545	454	389	341	272	227	170	136	110	92
				EC	EC			1.5	2.79	670	558	478	419	335	279	209	166	134	112
	UC			EC	VC			2.0	3.22	773	644	552	483	386	322	242	194	154	128
	EC			VC	VC			3.0	3.94	946	788	675	591	473	394	296	236	190	158
-10	EC			VC	С			4.0	4.55	1092	910	780	683	546	455	341	274	218	182
	VC			С	С			6.0	5.57	1337	1114	955	836	668	557	418	334	268	224
	VC							7.0	6.02	1445	1204		903	722	602	452	362	288	240
	VC							8.0	6.43		1286		965	772	643	482	386	310	258

Classification ISO 25358 selon la taille des gouttelettes :

Très fine Fine Moyenne Grossière Très grossière Extrême. grossière Ultra grossière

Sous réserve de modifications.

- Pression de service à la buse (mesurée avec une vanne à membrane)
- Les valeurs indiquées en litre par hectare s'appliquent à l'eau
- Vérifiez les valeurs du tableau en mesurant les débits avant chaque saison de pulvérisation
- Faites attention au réglage uniforme des buses

Application calcul et choix de buses

Les applications pour les buses agricoles Lechler facilitent encore plus la sélection et l'utilisation.

En savoir plus ici : www.lechler.com/ de-en/service/apps

Lechler GmbH · Buses de précision · Buses de pulvérisation et accessoires agricoles Ulmer Strasse 128 · 72555 Metzingen, Germany · Phone +49 7123 962-0 · info@lechler.de · www.lechler-agri.com

China: Lechler Nozzle Systems (Changzhou) Co., Ltd. • No.99 Decheng Rd, Jintan, Changzhou, JS 213200, P.R.C • Phone +86 400-004-1879 • info@lechler.com.cn

France: Lechler France SAS • Parc de la Haute Maison • 6, Allée Képler, Bâtiment C2 • 77420 Champs-sur-Marne • Phone +33 1 49882600 • info@lechler.fr

India: Lechler (India) Pvt. Ltd. • Plot B-2 • Main Road • Wagle Industrial Estate Thane • 400604 Maharashtra • Phone +91 22 40634444 • lechler@lechlerindia.com

Italy: Lechler Spray Technology S.r.l. • Via Don Dossetti, 2 • 20074 Carpiano (Mi) • Phone +39 02 98859027 • info@lechleritalia.com

Spain: Lechler, S.A. • C / Isla de Hierro, 7 – Oficina 1.3 • 28703 San Sebastián de los Reyes (Madrid) • Phone +34 91 6586346 • info@lechler.es

